Insights for light-driven molecular devices from ab initio multiple spawning excited-state dynamics of organic and biological chromophores.

نویسنده

  • Todd J Martínez
چکیده

We discuss the basic process of photoinduced isomerization as a building block for the design of complex, multifunctional molecular devices. The excited-state dynamics associated with isomerization is detailed through application of the ab initio multiple spawning (AIMS) method, which solves the electronic and nuclear Schrödinger equations simultaneously. This first-principles molecular dynamics approach avoids the uncertainties and extraordinary effort associated with fitting of potential energy surfaces and allows for bond rearrangement processes with no special input. Furthermore, the AIMS method allows for the breakdown of the Born-Oppenheimer approximation and thus can correctly model chemistry occurring on multiple electronic states. We show that charge-transfer states play an important role in photoinduced isomerization and argue that this provides an essential "design rule" for multifunctional devices based on isomerizing chromophores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photodynamics in complex environments: ab initio multiple spawning quantum mechanical/molecular mechanical dynamics.

Our picture of reactions on electronically excited states has evolved considerably in recent years, due to advances in our understanding of points of degeneracy between different electronic states, termed "conical intersections" (CIs). CIs serve as funnels for population transfer between different electronic states, and play a central role in ultrafast photochemistry. Because most practical pho...

متن کامل

Ab initio excited-state dynamics of the photoactive yellow protein chromophore.

The photoisomerization mechanism of the neutral form of the photoactive yellow protein (PYP) chromophore is investigated using ab initio quantum chemistry and first-principles nonadiabatic molecular dynamics (ab initio multiple spawning or AIMS). We identify the nature of the two lowest-lying excited states, characterize the short-time behavior of molecules excited directly to S2, and explain t...

متن کامل

Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations.

Progress in our understanding of ultrafast light-induced processes in molecules is best achieved through a close combination of experimental and theoretical approaches. Direct comparison is obtained if theory is able to directly reproduce experimental observables. Here, we present a joint approach comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS)...

متن کامل

Interfacing the Ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-azomethane.

This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabi...

متن کامل

Molecular dynamics simulation of bacteriorhodopsin's photoisomerization using ab initio forces for the excited chromophore.

Retinal proteins are photoreceptors found in many living organisms. They possess a common chromophore, retinal, that upon absorption of light isomerizes and thereby triggers biological functions ranging from light energy conversion to phototaxis and vision. The photoisomerization of retinal is extremely fast, highly selective inside the protein matrix, and characterized through optimal sensitiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accounts of chemical research

دوره 39 2  شماره 

صفحات  -

تاریخ انتشار 2006